Theorem 1. Finding both the minimum and maximum elements in an unsorted array requires at least $\left\lceil\frac{3 n}{2}\right\rceil-2$ comparisons in the worst case.
Proof. Here only the situation when n is even will be discussed. When n is odd, the analysis is of little difference.

Let A be the set of all n elements in an array. We define three auxiliary sets which are initially empty, nominally Big, Small and Discarded.

Given any algorithm $A l g$, let c_{i} denote $A l g$'s i-th comparison action. Note that $A l g$ will performance a sequence of comparisons c_{1}, \ldots, c_{m} in order to find out both the maximum and minimum elements. Our task is to show that $m \geq \frac{3}{2} n-2$.

Consider each comparison c_{i}, which shows the relationship $a_{x} \geq a_{y}$ for some elements a_{x}, a_{y}. Define operations on the four sets A, Big, Small and Discarded as following:

- If $a_{x} \in A$, move a_{x} to Big.
- If $a_{y} \in A$, move a_{y} to Small.
- If $a_{x} \in$ Small, move a_{x} to Discarded.
- If $a_{y} \in$ Big, move a_{y} to Discarded.
- Otherwise, keep a_{x} (or a_{y}) unmoved.

We claim but will not prove the following properties:

- Elements in Big cannot be minimum. Elements in Small cannot be maximum. And elements in Discarded can be neither minimum nor maximum.
- Any two elements in the same set X, where $X \in\{A, B i g$, Small $\}$, are not compared yet.
- To find out both the minimum and maximum. Finally A must be empty. Big and Small must have only one element each.

To do worst case analysis, suppose there is an evil adversary $A d v$. Adv controls the input data and it always tries to give the 'worst' (i.e. of least information) comparison result while ensuring consistency. Given two elements a_{x} and a_{y}, we define $A d v$'s behavior as following :

1. If $a_{x}, a_{y} \in X$ where $X \in\{A$, Big, Small $\}$, report $a_{x} \geq a_{y}$.
2. If $a_{x} \in \operatorname{Big}$ and $a_{y} \in A$, report $a_{x} \geq a_{y}$ (vise versa).
3. If $a_{x} \in A$ and $a_{y} \in S m a l l$, report $a_{x} \geq a_{y}$ (vise versa).
4. If $a_{x} \in \operatorname{Big}$ and $a_{y} \in$ Small, report $a_{x} \geq a_{y}$ (vise versa).
5. Otherwise, it must be $a_{x}, a_{y} \in$ Discarded. Depending on whether a_{x}, a_{y} were compared, report a consistent result.

Not difficult to see that $A d v$'s reports are consistent.
Note that for each comparison either (i) at most two elements are moved from A to Big/Small or (ii) at most one element is moved from Big/Small to Discarded. Thus to satisfy the final requirement that A is empty and Big and Small have one element each, it takes at least $n / 2$ steps to move out all elements from A according to (i), and it takes at least $n-2$ steps to move out extra elements from Big/Small according to (ii). Then the total number of comparisons needed is at least $n / 2+n-2=\frac{3}{2} n-2$.

