
Theorem 1. Finding both the minimum and maximum elements in an unsorted array requires
at least ⌈3n2 ⌉ − 2 comparisons in the worst case.

Proof. Here only the situation when n is even will be discussed. When n is odd, the analysis is
of little difference.

Let A be the set of all n elements in an array. We define three auxiliary sets which are
initially empty, nominally Big, Small and Discarded.

Given any algorithm Alg, let ci denote Alg’s i-th comparison action. Note that Alg will
performance a sequence of comparisons c1, . . . , cm in order to find out both the maximum and
minimum elements. Our task is to show that m ≥ 3

2n− 2.
Consider each comparison ci, which shows the relationship ax ≥ ay for some elements ax,

ay. Define operations on the four sets A, Big, Small and Discarded as following:

• If ax ∈ A, move ax to Big.

• If ay ∈ A, move ay to Small.

• If ax ∈ Small, move ax to Discarded.

• If ay ∈ Big, move ay to Discarded.

• Otherwise, keep ax (or ay) unmoved.

We claim but will not prove the following properties:

• Elements in Big cannot be minimum. Elements in Small cannot be maximum. And
elements in Discarded can be neither minimum nor maximum.

• Any two elements in the same set X, where X ∈ {A,Big,Small}, are not compared yet.

• To find out both the minimum and maximum. Finally A must be empty. Big and Small
must have only one element each.

To do worst case analysis, suppose there is an evil adversary Adv. Adv controls the input
data and it always tries to give the ‘worst’ (i.e. of least information) comparison result while
ensuring consistency. Given two elements ax and ay, we define Adv’s behavior as following :

1. If ax, ay ∈ X where X ∈ {A,Big,Small}, report ax ≥ ay.

2. If ax ∈ Big and ay ∈ A, report ax ≥ ay (vise versa).

3. If ax ∈ A and ay ∈ Small, report ax ≥ ay (vise versa).

4. If ax ∈ Big and ay ∈ Small, report ax ≥ ay (vise versa).

5. Otherwise, it must be ax, ay ∈ Discarded. Depending on whether ax, ay were compared,
report a consistent result.

Not difficult to see that Adv’s reports are consistent.
Note that for each comparison either (i) at most two elements are moved from A to Big/Small

or (ii) at most one element is moved from Big/Small to Discarded. Thus to satisfy the final
requirement that A is empty and Big and Small have one element each, it takes at least n/2
steps to move out all elements from A according to (i), and it takes at least n− 2 steps to move
out extra elements from Big/Small according to (ii). Then the total number of comparisons
needed is at least n/2 + n− 2 = 3

2n− 2.

1


